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Abstract

A decision tree T in Bm := {0, 1}m is a binary tree where each of its internal nodes is labeled

with an integer in [m] = {1, 2, . . . , m}, each leaf is labeled with an assignment a ∈ Bm and

each internal node has two outgoing edges that are labeled with 0 and 1, respectively. Let

A ⊂ {0, 1}m. We say that T is a decision tree for A if (1) For every a ∈ A there is one leaf of

T that is labeled with a. (2) For every path from the root to a leaf with internal nodes labeled

with i1, i2, . . . , ik ∈ [m], a leaf labeled with a ∈ A and edges labeled with ξi1
, . . . , ξik

∈ {0, 1}, a

is the only element in A that satisfies aij
= ξij

for all j = 1, . . . , k.

Our goal is to write a polynomial time (in n := |A| and m) algorithm that for an input

A ⊆ Bm outputs a decision tree for A of minimum depth. This problem has many applications

that include, to name a few, computer vision, group testing, exact learning from membership

queries and game theory.

Arkin et al. and Moshkov [4, 15] gave a polynomial time (ln |A|)- approximation algorithm

(for the depth). The result of Dinur and Steurer [7] for set cover implies that this problem cannot

be approximated with ratio (1 − o(1)) · ln |A|, unless P=NP. Moshkov studied in [15, 13, 14]

the combinatorial measure of extended teaching dimension of A, ETD(A). He showed that

ETD(A) is a lower bound for the depth of the decision tree for A and then gave an exponential

time ETD(A)/ log(ETD(A))-approximation algorithm and a polynomial time 2(ln 2)ETD(A)-

approximation algorithm.

In this paper we further study the ETD(A) measure and a new combinatorial measure,

DEN(A), that we call the density of the set A. We show that DEN(A) ≤ ETD(A) + 1. We

then give two results. The first result is that the lower bound ETD(A) of Moshkov for the depth

of the decision tree for A is greater than the bounds that are obtained by the classical technique

used in the literature. The second result is a polynomial time (ln 2)DEN(A)-approximation (and

therefore (ln 2)ETD(A)-approximation) algorithm for the depth of the decision tree of A.

We then apply the above results to learning the class of disjunctions of predicates from

membership queries [5]. We show that the ETD of this class is bounded from above by the

degree d of its Hasse diagram. We then show that Moshkov algorithm can be run in polynomial

time and is (d/ log d)-approximation algorithm. This gives optimal algorithms when the degree

is constant. For example, learning axis parallel rays over constant dimension space.
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34:2 Minimal Height Decision Tree

1 Introduction

Consider the following problem: Given an n-element set A ⊆ Bm := {0, 1}m from some

class of sets A and a hidden element a ∈ A. Given an oracle that answers queries of the

type: “What is the value of ai?”. Find a polynomial time algorithm that with an input

A, asks minimum number of queries to the oracle and finds the hidden element a. This is

equivalent to constructing a minimum height decision tree for A. A decision tree is a binary

tree where each internal node is labeled with an index from [m] and each leaf is labeled

with an assignment a ∈ Bm. Each internal node has two outgoing edges one that is labeled

with 0 and the other is labeled with 1. A node that is labeled with i corresponds to the

query “Is ai = 0?”. An edge that is labeled with ξ corresponds to the answer ξ. This decision

tree is an algorithm in an obvious way and its height is the worst case complexity of the

number of queries. A decision tree T is said to be a decision tree for A if the algorithm that

corresponds to T predicts correctly the hidden assignment a ∈ A. Our goal is to construct a

small height decision tree for A ⊆ Bm in time polynomial in m and n := |A|. We will denote

by OPT(A) the minimum height decision tree for A.

This problem is related to the following problem in exact learning [1]: Given a class C

of boolean functions f : X → {0, 1}. Construct in poly(|C|, |X|) time an optimal adaptive

algorithm that learns C from membership queries. This learning problem is equivalent to

constructing a minimum height decision tree for the set A = {a(i)|a
(i)
j = fi(xj)} where fi is

the ith function in C and xj is the jth instance in X. In computer vision the problem is

related to minimizing the number of “probes” (queries) needed to determine which one of

a finite set of geometric figures is present in an image [4]. In game theory the problem is

related to the minimum number of turns required in order to win a guessing game.

1.1 Previous and New Results

In [4], Arkin et al. showed that (AMMRS-algorithm) if at every node the decision tree chooses

i that partitions the current set (the set of assignments that are consistent to the answers

of the queries so far) as evenly as possible, then the height of the tree is within a factor

of log |A| from optimal. I.e., log |A|-approximation algorithm. Moshkov [15] analysis shows

that this algorithm is (ln |A|)-approximation algorithm. This algorithm runs in polynomial

time in m and |A|.

Hyafil and Rivest, [11], show that the problem of constructing a minimum depth decision

tree is NP-Hard. They actually consider the average depth but their technique can be

adopted to the minimum depth. The reduction of Laber and Nogueira, [12] to set cover with

the inapproximability result of Dinur and Steurer [7] for set cover implies that it cannot be

approximated to a factor of (1−o(1))·ln |A| unless P=NP. Therefore, no better approximation

ratio can be obtained if no constraint is added to the set A.

Moshkov, [13], studied the extended teaching dimension combinatorial measure, ETD(A),

of a set A ⊆ Bm. It is the maximum over all the possible assignments b ∈ Bm of the

minimum number of indices I ⊂ [m] in which b agrees with at most one a ∈ A. Moshkov

showed two results. The first is that ETD(A) is a lower bound for OPT(A). The second is an

exponential time algorithm that asks (2ETD(A)/ log ETD(A)) log n queries. This gives a (ln 2)

(ln |A|)/ log ETD(A) -approximation (exponential time) algorithm (since OPT(A) ≥ ETD(A))

and at the same time 2ETD (A)/ log ETD(A)-approximation algorithm (since OPT(A) ≥

log |A|). Since many interesting classes have small ETD dimension, the latter result gives

small approximation ratio but unfortunately Moshkov algorithm runs in exponential time.

In [14], Moshkov gave a polynomial time 2(ln 2)ETD(C)-approximation algorithm.
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In this paper we further study the ETD measure. We show that the above AMMRS-

algorithm, [4], is polynomial time (ln 2)ETD(C)-approximation algorithm. This improves

the 2(ln 2)ETD(C)-approximation algorithm of Moshkov.

Another reason for studying the ETD of classes is the following: If you find the ETD of

the set A then you either get a lower bound that is better than the information theoretic

lower bound log |A| or you get an approximation algorithm with a better ratio than ln |A|.

This is because if ETD(A) < log |A| then the AMMRS-algorithm has a ratio (ln 2)ETD(A)

that is better than the ln |A| ratio and if ETD(A) > log |A| then Moshkov lower bound,

ETD(A), for OPT(A) is better than the information theoretic lower bound log |A|.

To get the above results, we define a new combinatorial measure called the density DEN(A)

of the set A. If Q = DEN(A) then there is a subset B ⊆ A such that an adversary can give

answers to the queries that eliminate at most 1/Q fraction of the number of elements in B.

This forces the learner to ask at least Q queries. We then show that ETD(A) ≥ DEN(A) − 1.

On the other hand, we show that if Q = DEN(A) then a query in the AMMRS-algorithm

eliminates at least (1 − 1/Q) fraction of the assignments in A. This gives a polynomial time

(ln 2)DEN(A)-approximation algorithm which is also a (ln 2)(ETD(A) + 1)-approximation

algorithm.

In order to compare both algorithms we show that (ETD(A) − 1)/ ln |A| ≤ DEN(A) ≤

ETD(A)+1 and for random uniform A (and therefore for almost all A), with high probability

DEN(A) = Θ(ETD(A)/ ln |A|). Since |A| > ETD(A), this shows that AMMRS-algorithm

may get a better approximation ratio than Moshkov algorithm.

The inapproximability results follows from the reduction of Laber and Nogueira, [12]

to set cover with the inapproximability result of Dinur and Steurer [7] and the fact that

DEN(A) ≤ ETD(A) + 1 ≤ OPT(A) + 1.

We then apply the above results to learning the class of disjunctions of predicates from

a set of predicates F from membership queries [5]. We show that the ETD of this class is

bounded from above by the degree d of its Hasse diagram. We then show that Moshkov

algorithm, for this class, runs in polynomial time and is (d/ log d)-approximation algorithm.

Since |F| ≥ d (and in many applications, |F| ≫ d), this improves the |F|-approximation

algorithm SPEX in [5] when the size of Hasse diagram is polynomial. This also gives optimal

algorithms when the degree d is constant. For example, learning axis parallel rays over

constant dimension space.

2 Definitions and Preliminary Results

In this section we give some definitions and preliminary results

2.1 Notation

Let Bm = {0, 1}m. Let A = {a(1), . . . , a(n)} ⊆ Bm be an n-element set. We will write |A|

for the number of elements in A. For h ∈ Bm we define A + h = {a + h|a ∈ A} where + (in

the square brackets) is the bitwise exclusive or of elements in Bm.

For integer q let [q] = {1, 2, . . . , q}. Throughout the paper, log x = log2 x.

2.2 Optimal Algorithm

We denote by OPT(A) the minimum depth of a decision tree for A. Our goal is to build a

decision tree for A with small depth. Obviously

log n ≤ OPT(A) ≤ n − 1 (1)

where n := |A|. The following result is easy to prove (see the full paper [6])

ISAAC 2018
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◮ Lemma 1. We have OPT(A) = OPT(A + h).

2.3 Extended Teaching Dimension

In this section we define the extended teaching dimension.

Let h ∈ Bm be any element. We say that a set S ⊆ [m] is a specifying set for h with

respect to A if |{a ∈ A | (∀i ∈ S)hi = ai}| ≤ 1. That is, there is at most one element in A

that is consistent with h on the entries of S. Denote by ETD(A, h) the minimum size of a

specifying set for h with respect to A. The extended teaching dimension of A is

ETD(A) = max
h∈Bm

ETD(A, h). (2)

We will write ETDz(A) for ETD(A, 0). It is easy to see that

ETD(A, h) = ETDz(A + h) and ETD(A) = ETD(A + h). (3)

We say that a set S ⊆ [m] is a strong specifying set for h with respect to A if either h ∈ A

and |{a ∈ A | (∀i ∈ S)hi = ai}| = 1, or |{a ∈ A | (∀i ∈ S)hi = ai}| = 0. That is, if h ∈ A

then there is exactly one element in A that is consistent with h on the entries of S. Otherwise,

no element in A is consistent with h on S. Denote SETD(A, h) the minimum size of a strong

specifying set for h with respect to A. The strong extended teaching dimension of A is

SETD(A) = max
h∈Bm

SETD(A, h). (4)

We will write SETDz(A) for SETD(A, 0). It is easy to see that

SETD(A, h) = SETDz(A + h) and SETD(A) = SETD(A + h). (5)

Obviously, ETD(A, h) ≤ min(m, n − 1) and ETD(A, h) ≤ SETD(A, h) ≤ min(m, n)

We now show

◮ Lemma 2. We have ETD(A, h) ≤ SETD(A, h) ≤ ETD(A, h) + 1 and therefore ETD(A) ≤

SETD(A) ≤ ETD(A) + 1.

Proof. The fact ETD(A, h) ≤ SETD(A, h) follows from the definitions. Let S ⊆ [m] be a

specifying set for h with respect to A. Then for T := {a ∈ A | (∀i ∈ S)hi = ai} we have

t := |T | ≤ 1. If t = 0 or h ∈ A then S is a strong specifying set for h with respect to A. If t = 1

and h 6∈ A then for the element a ∈ T there is j ∈ [m] such that aj 6= hj and then S ∪{j} is a

strong specifying set for h with respect to A. This proves that SETD(A, h) ≤ ETD(A, h) + 1.

The other claims follows immediately. ◭

Obviously, for any B ⊆ A

ETD(B) ≤ ETD(A), SETD(B) ≤ SETD(A). (6)

2.4 Hitting Set

A hitting set for A is a set S ⊆ [m] such that for every non-zero element a ∈ A there is j ∈ S

such that aj = 1. That is, S hits every element in A except the zero element (if it exists).

The size of the minimum size hitting set for A is denoted by HS(A).

We now show

◮ Lemma 3. We have HS(A) = SETDz(A). In particular, SETD(A, h) = HS(A + h) and

SETD(A) = maxh∈Bm
HS(A + h).
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Proof. If 0 ∈ A then SETDz(A) is the minimum size of a set S such that {a ∈ A | (∀i ∈

S)ai = 0} = {0} and if 0 6∈ A then it is the minimum size of a set S such that {a ∈ A | (∀i ∈

S)ai = 0} = ∅. Therefore the set S hits all the nonzero elements in A.

The other results follow from (5) and the definition of SETD. ◭

2.5 Density of a Set

In this section we define our new measure DEN of a set.

Let A = {a(1), . . . , a(n)} ⊆ Bm. We define MAJ(A) ∈ Bm such that MAJ(A)i = 1 if the

number of ones in (a
(1)
i , · · · , a

(n)
i ) is greater or equal the number of zeros and MAJ(A)i = 0

otherwise. We denote by MAX(A) the maximum number of ones in (a
(1)
i , · · · , a

(n)
i ) over all

i = 1, . . . , m. Let

MAMI(A) = min
h∈Bm

MAX(A + h) = MAX(A + MAJ(A)). (7)

For j ∈ [m] and ξ ∈ {0, 1} let Aj,ξ = {a ∈ A | aj = ξ}. Then

MAMI(A) = max
j

min(|Aj,0|, |Aj,1|). (8)

We define the density of a set A ⊆ Bm by

DEN(A) = max
B⊆A

|B| − 1

MAMI(B)
. (9)

Notice that since every j ∈ [m] can hit at most MAX(A) elements in A we have

HS(A) ≥
|A| − 1

MAX(A)
. (10)

3 Bounds for OPT

In this section we give upper and lower bounds for OPT.

3.1 Lower Bound

Moshkov results in [13, 10] and the information theoretic bound in (1) give the following

lower bound. We give the proof in the full paper [6] for completeness.

◮ Lemma 4. [13, 10] Let A ⊆ Bm be any set. Then OPT(A) ≥ max(ETD(A), log |A|).

Many lower bounds in the literature for OPT(A) are based on finding a subset B ⊆ A

such that for each query there is an answer that eliminates at most small fraction E of B.

Then (|B| − 1)/E is a lower bound for OPT(A). The best possible bound that one can

get using this technique is exactly DEN(A) (Lemma 5), the density defined in Section 2.5.

Lemma 6 shows that the lower bound ETD(A) for OPT(A) exceeds any such bound.

In the full paper [6] we prove

◮ Lemma 5. We have OPT(A) ≥ DEN(A).

◮ Lemma 6. We have ETD(A) ≥ DEN(A) − 1.

ISAAC 2018
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Proof. By (7) and (9) there is B ⊆ A such that

DEN(A) =
|B| − 1

MAMI(B)
=

|B| − 1

MAX(B + h)
(11)

where h = MAJ(B). Then

ETD(A)
(6)

≥ ETD(B)
(2)

≥ ETD(B, h)
L2
≥ SETD(B, h) − 1

L3
= HS(B + h) − 1

(10)

≥
|B| − 1

MAX(B + h)
− 1

(11)
= DEN(A) − 1.

◭

In the full paper [6] we also prove

◮ Lemma 7. We have ETD(A) ≤ ln |A| · DEN(A) + 1.

It is also easy to see (by standard analysis using Chernoff Bound) that for a random uniform

A, with positive probability, DEN(A) = O(1) and ETD(A) = Θ(log |A|). See the proof

sketch in the full paper [6]. So the bound in Lemma 7 is asymptotically best possible.

3.2 Upper Bounds

Moshkov [13, 10] proved the following upper bound. We gave the proof in the full paper [6]

for completeness.

◮ Lemma 8. [13, 10] Let A ⊆ {0, 1}m of size n. Then

OPT(A) ≤ ETD(A) +
ETD(A)

log ETD(A)
log n ≤

2 · ETD(A)

log ETD(A)
log n.

In [13, 10], Moshkov gave an example of a n-set AE ⊆ {0, 1}m with ETD(AE) = E

and OPT(AE) = Ω((E/ log E) log n). So the upper bound in the above lemma is the best

possible.

4 Polynomial Time Approximation Algorithm

Given a a set A ⊆ Bm. Can one construct an algorithm that finds a hidden a ∈ A with

OPT(A) queries? Obviously, with unlimited computational power this can be done so the

question is: How close to OPT(A) can one get when polynomial time poly(m, n) is allowed

for the construction?

An exponential time algorithm follows from the following

OPT(A) = min
i∈[m]

max(OPT(Ai,0), OPT(Ai,1))

where Ai,ξ = {a ∈ A | ai = ξ}. This algorithm runs in time at least m! ≥ (m/e)m. See

also [8, 3].

Can one give a better exponential time algorithm? In what follows (Theorem 9) we

use Moshkov [13, 10] result (Lemma 8) to give a better exponential time approximation

algorithm. In in the full paper [6] we give another simple proof of the Moshkov [13, 10] result

that in practice uses less number of specifying sets. When the extended teaching dimension

is constant, the algorithm is O(1)-approximation algorithm and runs in polynomial time.
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◮ Theorem 9. Let A be a class of sets A ⊆ Bm of size n. If there is an algorithm that for

any h ∈ Bm and any A ∈ A gives a specifying set for h with respect to A of size at most E

in time T then there is an algorithm that for any A ∈ A constructs a decision tree for A of

depth at most

E +
E

log E
log n ≤ E +

E

log E
OPT(A)

queries and runs in time O(T log n + nm).

Proof. Follows immediately from Moshkov algorithm [13, 10]. See the full paper [6]. ◭

The following result immediately follows from Theorem 9.

◮ Theorem 10. Let A ⊆ Bm be a n-set. There is an algorithm that finds the hidden column

in time
(

m

ETD(A)

)

· ETD(A) · n log n

and asks at most

2 · ETD(A) · log n

log ETD(A)
≤

2 · min(ETD(A), log n)

log ETD(A)
OPT(A)

queries.

In particular, if ETD(A) is constant then the algorithm is O(1)-approximation algorithm

that runs in polynomial time.

Proof. To find a specifying set for h with respect to A we exhaustively check each ETD(A)

row of A. Each check takes time n. Since the algorithm asks at most ETD(A) · log n queries,

the time complexity is as stated in the Theorem. ◭

Can one do it in poly(m, n) time? Hyafil and Rivest, [11], show that the problem of

finding OPT is NP-Complete. The reduction of Laber and Nogueira, [12], of set cover to

this problem with the inapproximability result of Dinur and Steurer [7] for set cover implies

that it cannot be approximated to (1 − o(1)) · ln n unless P=NP.

In [4], Arkin et al. showed that (the AMMRS-algorithm) if at the ith query the algorithm

chooses an index j that partitions the current node set (the elements in A that are consistent

with the answers until this node) A as evenly as possible, that is, that maximizes min(|{a ∈

A|aj = 0}|, |{a ∈ A|aj = 1}|), then the query complexity is within a factor of ⌈log n⌉ from

optimal. The AMMRS-algorithm, [4], runs in time poly(m, n). Moshkov [4, 15] analysis

shows that this algorithm is ln n-approximation algorithm and therefore is optimal. In this

section we will give a simple proof.

In [13, 10], Moshkov gave a simple ETD(A)-approximation algorithm (Algorithm MEMB-

HALVING-1 in [10]). He then gave another algorithm that achieves the query complexity in

Lemma 8 (Algorithm MEMB-HALVING-2 in [10]). This is within a factor of

2 · min(ETD(A), log n)

log ETD(A)

from optimal. This is better than the ratio ln n, but, unfortunately, both algorithms require

finding a minimum size specifying set and the problem of finding a minimum size specifying

set for h is NP-Hard, [16, 2, 9]. Moshkov gave in [14] a polynomial time 2(ln 2)-approximation

algorithm.

ISAAC 2018
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Can one achieve a better approximation ratio? In the following we give a surprising

result. We show that the AMMRS-algorithm asks DEN(A) ln |A| queries. Therefore, it is a

(ln 2)DEN(A)-approximation algorithm and therefore it is a (ln 2)ETD(A)-approximation

algorithm. This also prove that it is a ln |A|-approximation algorithm. We also show that no

algorithm with query complexity (1 − ǫ)DEN(A) ln |A| is possible unless P=NP.

◮ Theorem 11. The AMMRS-algorithm runs in time O(mn) and finds the hidden element

a ∈ A with at most

DEN(A) · ln(n) ≤ min((ln 2)DEN(A), ln n) · OPT(A)

≤ min((ln 2)(ETD(A) + 1), ln n) · OPT(A)

queries.

Proof. Let B be any subset of A. Then,

DEN(B)
(9)

≥
|B| − 1

MAMI(B)

and therefore

MAMI(B) ≥
|B| − 1

DEN(B)
≥

|B| − 1

DEN(A)
.

Since the AMMRS-algorithm chooses at each node in the decision tree the index j that

maximizes min(|Bj,0|, |Bj,1|) where Bj,ξ = {a ∈ B|aj = ξ} and B is the set of elements in A

that are consistent with the answers until this node, we have

max(|Bj,0|, |Bj,1|) − 1 = |B| − 1 − min(|Bj,0|, |Bj,1|)

(8)
= |B| − 1 − MAMI(B) ≤ (|B| − 1)

(

1 −
1

DEN(A)

)

.

Therefore, for a node v of depth h in the decision tree, the set B(v) of elements in A that

are consistent with the answers until this node contains at most

(|A| − 1)

(

1 −
1

DEN(A)

)h

+ 1

elements. Therefore the depth of the tree is at most DEN(A) ln |A|. ◭

We now show that the query complexity of this algorithm is optimal unless P=NP.

◮ Theorem 12. Let ǫ be any constant. There is no polynomial time algorithm that finds the

hidden element with less than (1 − ǫ)DEN(A) · ln |A| unless P=NP.

Proof. Suppose such an algorithm exists. Then (1−ǫ)DEN(A) ln |A|
L5
≤ (1−ǫ) ln |A|OPT(A).

That is, the algorithm is also (1 − ǫ) ln |A|-approximation algorithm. Laber and Nogueira,

[12] gave a polynomial time algorithm reduction of minimum depth decision tree to set cover

and Dinur and Steurer [7] show that there is no polynomial time (1 − o(1)) · ln |A| for set

cover unless P=NP. Therefore, such an algorithm implies P=NP. ◭
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5 Applications to Disjunction of Predicates

In this section we apply the above results to learning the class of disjunctions of predicates

from a set of predicates F from membership queries [5].

Let C = {f1, . . . , fn} be a set of boolean functions fi : X → {0, 1} where X =

{x1, . . . , xm}. Let AC = {(fi(x1), . . . , fi(xm)) | i = 1, . . . , n}. We will write OPT(AC),

ETD(AC), etc. as OPT(C), ETD(C), etc.

Let F be a set of boolean functions (predicates) over a domain X. We consider the class

of functions F∨ := {∨f∈Sf | S ⊆ F}.

5.1 An Equivalence Relation Over F∨

In this section, we present an equivalence relation over F∨ and define the representatives

of the equivalence classes. This enables us in later sections to focus on the representative

elements from F∨. Let F be a set of boolean functions over the domain X. The equivalence

relation = over F∨ is defined as follows: two disjunctions F1, F2 ∈ F∨ are equivalent (F1 = F2)

if F1 is logically equal to F2. In other words, they represent the same function (from X to

{0, 1}). We write F1 ≡ F2 to denote that F1 and F2 are identical; that is, they have the

same representation. For example, consider f1, f2 : {0, 1} → {0, 1} where f1(x) = 1 and

f2(x) = x. Then, f1 ∨ f2 = f1 but f1 ∨ f2 6≡ f1.

We denote by F∗
∨ the set of equivalence classes of = and write each equivalence class as [F ],

where F ∈ F∨. Notice that if [F1] = [F2], then [F1∨F2] = [F1] = [F2]. Therefore, for every [F ],

we can choose the representative element to be GF := ∨F ′∈SF ′ where S ⊆ F is the maximum

size set that satisfies ∨S := ∨f∈Sf = F . We denote by G(F∨) the set of all representative

elements. Accordingly, G(F∨) = {GF | F ∈ F∨}. As an example, consider the set F

consisting of four functions f11, f12, f21, f22 : {1, 2}2 → {0, 1} where fij(x1, x2) = [xi ≥ j]

where [xi ≥ j] = 1 if xi ≥ j and 0 otherwise. There are 24 = 16 elements in Ray2
2 := F∨ and

five representative functions in G(F∨): G(F∨) = {f11 ∨ f12 ∨ f21 ∨ f22, f12 ∨ f22, f12, f22, 0}

(where 0 is the zero function).

5.2 A Partial Order Over F∨ and Hasse Diagram

In this section, we define a partial order over F∨ and present related definitions. The partial

order, denoted by ⇒, is defined as follows: F1⇒F2 if F1 logically implies F2. Consider the

Hasse diagram H(F∨) of G(F∨) for this partial order. The maximum (top) element in the

diagram is Gmax := ∨f∈F f . The minimum (bottom) element is Gmin := ∨f∈∅f , i.e., the

zero function.

In a Hasse diagram, G1 is a descendant (resp., ascendent) of G2 if there is a (nonempty)

downward path from G2 to G1 (resp., from G1 to G2), i.e., G1⇒G2 (resp., G2⇒G1) and

G1 6= G2. G1 is an immediate descendant of G2 in H(F∨) if G1⇒G2, G1 6= G2 and there is

no G ∈ G(F∨) such that G 6= G1, G 6= G2 and G1⇒G⇒G2. G1 is an immediate ascendant

of G2 if G2 is an immediate descendant of G1.

We denote by De(G) and As(G) the sets of all the immediate descendants and immediate

ascendants of G, respectively. The neighbours set of G is Ne(G) = De(G)∪As(G). We further

denote by DE(G) and AS(G) the sets of all G’s descendants and ascendants, respectively.

◮ Definition 13. The degree of G is deg(G) = |Ne(G)| and the degree deg(F∨) of F∨ is

maxG∈G(F∨) deg(G).
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For G1 and G2, we define their lowest common ascendent (resp., greatest common

descendant) G = lca(G1, G2) (resp., G = gcd(G1, G2)) to be the minimum (resp., maximum)

element in AS(G1) ∩ AS(G2) (resp., DE(G1) ∩ DE(G2)).

The following result is from [5]

◮ Lemma 14. Let G1, G2 ∈ G(F∨). Then, lca(G1, G2) = G1 ∨ G2.

In particular, if G1, G2 are two distinct immediate descendants of G, then G1 ∨ G2 = G.

5.3 Witnesses

In this subsection we define the term witness. Let G1 and G2 be elements in G(F∨). An

element a ∈ X is a witness for G1 and G2 if G1(a) 6= G2(a).

For a class of boolean functions C over a domain X and a function G ∈ C we say that a

set of elements W ⊆ X is a witness set for G in C if for every G′ ∈ C and G′ 6= G there is a

witness in W for G and G′.

5.4 The Extended Teaching Dimension of F∨

In this section we prove

◮ Lemma 15. For every h : X → {0, 1} if h ; Gmax then ETD(F∨, h) = 1. Otherwise,

there is G ∈ G(F∨) such that

ETD(F∨, h) ≤ |De(G)| + HS(As(G) ∧ Ḡ) ≤ |Ne(G)| = deg(G)

where As(G) ∧ Ḡ = {s ∧ Ḡ | s ∈ As(G)}. In particular,

ETD(F∨) ≤ max
G∈G(F∨)

(

|De(G)| + HS(As(G) ∧ Ḡ)
)

≤ deg(F∨).

Proof. Let h : X → {0, 1} be any function. If h ; Gmax then there is an assignment a that

satisfies h(a) = 1 and Gmax(a) = 0. Since for all G ∈ G(F∨), G ⇒ Gmax we have G(a) = 0.

Therefore, the set {a} is a specifying set for h with respect to F∨ and ETD(F∨, h) = 1.

Let h ⇒ Gmax. Consider any G ∈ G(F∨) such that h⇒G and for every immediate

descendant G′ of G we have h ; G′. Now for every immediate descendent G′ of G find an

assignment a such that G′(a) = 0 and h(a) = 1. Then a is a witness for h and G′. Therefore,

a is also a witness for h and every descendant of G′. Let A be the set of all such assignments,

i.e., for every descendant of G one witness. Then |A| ≤ |De(G)| and A is a witness set for

h and all the descendants of G. We note here that if h = 0 then G = Gmin which has no

immediate descendants and then A = ∅.

Consider a hitting set B for As(G) ∧ Ḡ of size HS(As(G) ∧ Ḡ). Now for every immediate

ascendant G′′ of G find an assignment b ∈ B such that G′′(b) ∧ Ḡ(b) = 1. Then G′′(b) = 1

and G(b) = 0. Since G(b) = 0 we have h(b) = 0 and then b is a witness for h and G′′.

Therefore, b is also a witness for h and every ascendant of G′′. Thus B is a witness set for h

in all the ascendants of G.

Let G0 be any element in G(F∨) (that is not a descendant or an ascendant). Consider

G1 = lca(G, G0). By Lemma 14, we have G1 = G ∨ G0. Since G1 is an ascendent of G there

is a witness a ∈ B such that G1(a) = 1 and G(a) = 0. Then G0(a) = 1, h(a) = 0 and a is a

witness of h and G0. Therefore A ∪ B is a specifying set for h with respect to G(F∨). Since

for every F ∈ F∨ we have F = GF ∈ G(F∨), A ∪ B is also a specifying set for h with respect

to F∨.
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Since

ETD(F∨, h) ≤ |A| + |B| ≤ |De(G)| + HS(As(G) ∧ Ḡ)

the result follows. ◭

In in the full paper [6] we show that

ETD(F∨) = max
G∈G(F∨)

(

|De(G)| + HS(As(G) ∧ Ḡ)
)

.

We could have replaced |De(G)| by HS(De(G) ∧ G), but in the full paper [6] we show that

they are both equal.

The following result follows immediately from the proof of Lemma 15

◮ Lemma 16. For any h : X → {0, 1}, a specifying set for h with respect to F∨ of size

deg(F∨) can be found in time O(nm).

By Theorem 9 we have

◮ Theorem 17. There is an algorithm that learns F∨ in time O(nm) and asks at most

deg(F∨) +
deg(F∨)

log deg(F∨)
log n ≤

(

deg(F∨)

log deg(F∨)
+ 1

)

OPT(F∨)

membership queries.

5.5 Learning Other Classes

If a specifying set of small size cannot be found in polynomial time then from Theorem 10,

11 and Lemma 15, we have

◮ Theorem 18. For a class C we have

1. There is an algorithm that learns C in time

(

m

deg(C)

)

· ETD(C) · n log n

and asks at most

2 · ETD(C) · log n

log ETD(C))
≤

2 · min(ETD(C)), log n)

log ETD(C))
OPT(C)

membership queries.

In particular, when ETD(C) is constant the algorithm runs in polynomial time and its

query complexity is (asymptotically) optimal.

2. There is an algorithm that learns C in time O(nm) and asks at most

DEN(C) · ln(n) ≤ min((ln 2)DEN(C), ln n) · OPT(C)

≤ min((ln 2)(ETD(C) + 1), ln n) · OPT(C)

membership queries.
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