
Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 1

Yechiel M. Kimchi
The Technion, CS Faculty

VLSI – Verification, Logic Synthesis, Israel Ltd.

How Can SW-Engineering Education
Improve SW-Quality?

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 2

A more basic question:

Can SW-Engineering Education
Improve SW-Quality?

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 3

Roadmap

• “Why Software is So Bad?” (The question, not the answer)

• How to Review the Coding Process?

• Expectations from Quality Software

• Some Rules for Realization of Expectations

• Coding Standards Guides vs. those Principles

• Education, Management & in-betweens.

• Examples and Observations

• Q&A

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 4

Why Software is So Bad?

• “Why software is so bad?” (2002) [1]

• “Why Software Fails” (2005) [2]

• “The Software Conspiracy” (1999) [3]

• An Interview w. Jerry Weinberg (2001) [4]
Q. “What … major milestones of SWEng. discipline

in the last three decades?”

A. “Well, I don’t think there have been any.”

Q. “… what about … testing …?”

A. “… made them sloppier developers;

… more encouraged to throw stuff … to testing.”

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 5

Why Software is So Bad? (cont.)

• An Interview w. B. Stroustrup (2006) [5]

Q. “Why is most software so bad? …”

A. “… if software had been as bad as its reputation,

most of us would have been dead by now.”

Q. “How can we fix the mess we are in?”

A. [a full page] “In theory, …: educate our software developers

better, … Reward correct, solid, and safe systems.

Punish sloppiness. In reality, that’s essentially impossible.

People want new fancy gadgets right now and reward

people who deliver them cheaply, buggy, and first. …”

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 6

Roadmap

• “Why Software is So Bad?” (The question, not the answer)

• How to Review the Coding Process?

• Expectations from Quality Software

• Some Rules for Realization of Expectations

• Coding Standards Guides vs. those Principles

• Education, Management & in-betweens.

• Examples and Observations

• Q&A

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 7

How to Review the Coding Process?

I am reluctant to read M-LOC

So I have focused my attention on well known

Coding Standard documents

Coding standards [from Wikipedia: Coding conventions]

Where coding conventions have been specifically designed to produce

high-quality code, and have then been formally adopted, they then become
coding standards. Specific styles, irrespective of whether they are
commonly adopted, do not automatically produce good quality code. It is
only if they are designed to produce good quality code that they actually
result in good quality code being produced, i.e., they must be very logical in
every aspect of their design - every aspect justified and resulting in quality
code being produced.

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 8

How to Review the Coding Process?

I have reviewed

• MISRA-C (Motor Industry Software Reliability Association)

• JSF AV C++ Coding Standards (F-35)

• Google C++ Style Guide

• Linux kernel coding style

• GNU Coding Standards

What should those be compared with

in order to find what they miss?

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 9

How to Review the Coding Process?

What should those be compared with

in order to find what they miss?

• How about comparing with the desired “ideal”?

– W.r.t. my current knowledge

• Let’s go for it

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 10

Roadmap

• “Why Software is So Bad?” (The question, not the answer)

• How to Review the Coding Process?

• Expectations from Quality Software

• Some Rules for Realization of Expectations

• Coding Standards Guides vs. those Principles

• Education, Management & in-betweens.

• Examples and Observations

• Q&A

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 11

Expectations from Quality Software

Software

The Structure of Software

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 12

Expectations from Quality Software

Software is Fractal like

What are the recurring Parts ?

Software

Component

Library

Module

ADT

Class

Function/Procedure

Command (loop/conditional)

Expression (operator/function call)

Where does a package fit in?

Some of the inclusions may be reversed

An atomic (leaf) part, is a Section of code

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 13

Expectations from Quality Software

Service = Interface + Implementation

Interface = Preconditions + Post Conditions
. - Invariants ☺☺☺☺

Implementation = As Independent As Can Be (*)

(*) Independent Commands/Expressions?

An Opportunity for Concurrency

What is Common to these Parts?

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 14

Expectations from Quality Software

Meta-Rule: Software is a collection of parts

that are governed by same requirements

• Independence

• Separation

• Controlled communication (Interface)

• Simplicity

How can these requirements

be translated into

language-independent rules?

These four are not at all

separated/independent

of one another

I ignore uniformity rules,

which are really stylistic

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 15

Roadmap

• “Why Software is So Bad?” (The question, not the answer)

• How to Review the Coding Process?

• Expectations from Quality Software

• Some Rules for Realization of Expectations

• Coding Standards Guides vs. those Principles

• Education, Management & in-betweens.

• Examples and Observations

• Q&A

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 16

Practical Rules

Independence ���� No goto

Did you know? There are three versions of goto

• Control: The well known goto command

- Allows two sections to mix their commands

• Value: Global variables
- Allows several sections to share values

- Using a value created by an unknown section

• Type: Using ptr/ref casting
- It’s not a conversion, it is an assumption

(*)

(*)

Which one
is worst?

(*) Thanks to Marshall Cline, owner of C++ FAQs

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 17

Practical Rules

a cross-module goto or a global variable

ModuleA

ModuleB

ModuleA

What’s Worse?

ModuleB

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 18

Practical Rules

Separation

Two common techniques

for separation are hiding

& hiding implementation

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 19

Practical Rules

Separation ���� Modularity

VS.

Example: If a function contains two loops, it is almost impossible
. to test one of them separated from the other

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 20

Practical Rules

Separation ���� Functions

The Biggest Misconception

About Functions
(����)

(����) Except interface functions

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 21

Practical Rules

Separation ���� Functions

The Purpose of Functions is

to Eliminate Code Duplication

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 22

Practical Rules

Separation ���� Functions

The Purpose of Functions

is to make the Code

Easier to Understand

• By naming a piece of code (saving comments)

• By hiding its implementation (high level code)

• By making pre/post-conditions explicit

– Also allowing (partial) isolation for testing

• By making the hosting code/function shorter

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 23

Practical Rules

Separation

• Functions are for easy understanding

• Separate different concerns

• The evil of code-duplication

• Encapsulation

• No getters.
The lesson of Ariane5

(*)

(*)

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 24

Practical Rules

Controlled communication (Interface)

• Minimize number of users (|Width| = |I|*|U| = ΣΣΣΣ((((i εεεε Ι)Ι)Ι)Ι)Ui)

• Minimal and complete (S. Meyers Eff. C++ 2nd)

• Make pre/post-conditions explicit

• Interface should preserve invariants

– No setters

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 25

Practical Rules

Simplicity

• Short functions - single task

• Shallow nesting - low (cyclomatic) complexity

• Minimize function’s side-effect

• Function side-effects via interface (visible)

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 26

Roadmap

• “Why Software is So Bad?” (The question, not the answer)

• How to Review the Coding Process?

• Expectations from Quality Software

• Some Rules for Realization of Expectations

• Coding Standards Guides vs. those Principles

• Education, Management & in-betweens.

• Examples and Observations

• Q&A

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 27

Coding Standards Guides

I argue that coding standards documents:

• Miss most of the aforementioned coding rules

• Have stuff that should be put elsewhere.

Indeed, they are more about low-level style

– e.g., uniformity and language don’ts + mini-rules.

Those are very important in practice,

but they do not replace the general rules.

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 28

Coding Standards Guides

MISRA-C (2004) has:

• “Minimal” scope for variables [in a function]

• Whether objects are declared at the outermost or

innermost block is largely a matter of style [?]

• (adv) Restrictions on pointer casting

• No goto/continue (break is restricted)

• Functions have a single point of exit at its end

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 29

Coding Standards Guides

JSF-AV C++ (2005) has:

• Class interface should be complete and minimal

• Const member functions are better

• (adv) usage of invariants

• No goto/continue (break is restricted)

• (adv) avoiding global variables

• Restricts down-casting (and casting in general)

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 30

Coding Standards Guides

A Possible Reservation:

The missing rules are expected to be well
known by their knowledgeable engineers.

Indeed, it is possible. But then,

how come they have the following rules?

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 31

Coding Standards Guides

MISRA-C (2004) has:

• 12.3 (req) The sizeof operator shall not be used

on expressions that contain side effects.

- [They are worried programmers will expect evaluation]

• 16.8 (req) All exit paths from a function with non-void

return type shall have an explicit return statement

with an expression.

• 17.6 (req) The address of an object with automatic

storage shall not be assigned to another object that

may persist after the first object has ceased to exist.

- [See below] (*)

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 32

Coding Standards Guides

JSF-AV C++ (2005) has:

• #60 (as MISRA-C) The sizeof operator …

• #81 The assignment operator shall handle

self-assignment correctly

• #82 An assignment operator shall return

a reference to *this

• #111 A function shall not return a pointer

or reference to a non-static local object

- [See below] (*)

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 33

Coding Standards Guides

(*)The first day I’ve got the new, 3rd edition, of Stan Lippman’s C++ Primer,
I found three related errors: an automatic variable returned by reference.

Stan’s response to my e-mail was not just apologetic – he couldn’t understand
how that error eluded both his review as well as the technical reviewers.

Do you think that a rule such as the above white

board white could have helped them?

Coding standard is about conscious activity
not about unintentional errors

– Such rules belong to learning

– Most are checked by lint-like tools

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 34

Coding Standards Guides

More from JSF-AV C++ (2005) has:

• #1 Any one function (or method) will contain no more

than 200 logical source lines of code (L-SLOCs).

- Rationale: Long functions tend to be complex

and therefore difficult to comprehend and test.

• #3 All functions shall have a cyclomatic

complexity number of 20 or less

- Rationale: Limit function complexity.

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 35

Coding Standards Guides

Cyclomatic Complexity: McCabe, 1976

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 36

Roadmap

• “Why Software is So Bad?” (The question, not the answer)

• How to Review the Coding Process?

• Expectations from Quality Software

• Some Rules for Realization of Expectations

• Coding Style Guides vs. those Principles

• Education, Management & in-betweens.

• Examples and Observations

• Q&A

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 37

From Education to Management

Unless one objects to most what I have presented,

the conclusions are mostly obvious.

Here is my take:

• First programming course – by SW-Eng literate staff.

– Bad habits are hard to change (contrary to good habits)

– Otherwise, programming is a tool – not a profession.

• Other programming courses – by SW-Eng. aware staff.

– E.g., if HW is programming, TAs should be knowledgeable.

• Gradually introduce the rules (only half were presented)

– Explain the rules’ rational (they are essence, not style)

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 38

From Education to Management

Cooperate with the industry – when you’re welcome
(I know of a case were even success didn’t change attitude)

Here is my take:

• Industry is good at fighting bugs – not at eliminating them

– There are many great bug tracking systems

– There is no single non-bug tracking system

• Industry spends M-$ on testing

– But much less on educating their engineers

– “Your code must be maintainable by the least experienced team member”

• Industry spends M-$ on process

– But much less on contents [?]

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 39

ACCU Meeting, speaker: Dan Saks 10/25/11 (abstract)

Most programmers fancy themselves to be rational and objective, more

so than the general population. Recent research suggests this self

image might have a basis in fact.

Nonetheless, C and C++ programmers still cling to programming styles

and practices which are unsupported by evidence and sometimes

even contradicted by it.

Comedian Stephen Colbert has popularized the word "truthiness" to

describe the human trait of knowing something "from the gut" without

regard to actual facts. This talk takes a lighthearted look at C and C++

programmers' truthiness in the hope of inspiring more truthfulness.

Resisting Changes

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 40

Roadmap

• “Why Software is So Bad?” (The question, not the answer)

• How to Review the Coding Process?

• Expectations from Quality Software

• Some Rules for Realization of Expectations

• Coding Style Guides vs. those Principles

• Education, Management & in-betweens.

• Examples and Observations

• Q&A

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 41

PlumberStatus

Tap::open_tap(const string& tap_name)

{

LockSys<Mutex> LL(tap_lock_);

TapMap::const_iterator it =

taps_.find(tap_name);

if (it == taps_.end()) {

return PLUMB_TAP_NOT_FOUND;

}

it->second->operate(true);

return PLUMB_OK;

}

Examples and Observations

A Simple Industrial Example

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 42

PlumberStatus

Tap::close_tap(const string& tap_name)

{

LockSys<Mutex> LL(tap_lock_);

TapMap::const_iterator it =

taps_.find(tap_name);

if (it == taps_.end()) {

return PLUMB_TAP_NOT_FOUND;

}

it->second->operate(false);

return PLUMB_OK;

}

Examples and Observations

What’s the difference?

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 43

Examples and Observations

What’s The Problem?

• Is it code duplication?

– Let’s see:

• After extracting out the common parts we get

PlumberStatus

Tap::open_tap(const string& tap_name)

{

LockSys<Mutex> LL(tap_lock_);

if (!tap_found(tap_name)) {

return PLUMB_TAP_NOT_FOUND;

}

it->second->operate(true);

return PLUMB_OK;

}

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 44

Code Duplication is just the Symptom

• Delegation (of a function call)

• Wrapping: Transforming boolean value => name

The real problem:
Each one of them has two tasks

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 45

Single Task Implementation - Delegation

PlumberStatus

Tap::operate_tap(const string& name, bool open)

{ LockSys<Mutex> LL(tap_lock_);

TapMap::const_iterator it =

taps_.find(tap_name);

if (it == taps_.end()) {

return PLUMB_TAP_NOT_FOUND;

}

it->second->operate(open);

return PLUMB_OK;

}

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 46

Single Task Implementation – Wrappers

inline PlumberStatus

Tap::open_tap(const string& tap_name)

{ return operate_tap(tap_name, true);}

inline PlumberStatus

Tap::close_tap(const string& tap_name)

{ return operate_tap(tap_name, false);}

With appropriate design, these may be made

non-member non-friend functions

Both functions are inlined,

so they consume no executable space

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 47

The Original has a Third Problem

It enforces awkward usage

if (activation_required) {

open_tap(name);

} else {

close_tap(name);

}

Instead of

operate_tap(name, activation_required);

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 48

if (A) {

value = true;

} else if (B) {

value = false;

} else if (C) {

value = false;

} else {

value = true;

}

////// An Alternative ////////

value = A || (!B && !C);

Some developers claim the alternative
will not be understood by new hires.

The above is idiomatic in C and C++. Therefore, we can choose between

1. Gradually elevating our new hires’ knowledge to a professional level.

2. Adjusting our professional code to meet our new hires’ knowledge.

Resisting Changes (industrial example)

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 49

Resisting Changes (cont.)

if (A) {

value = true;

} else if (B) {

valve = false;

} else if (C) {

value = false;

} else {

value = true;

}

////// An Alternative ////////

value = A || (!B && !C);

Some developers claim the alternative
will not be understood by new college
graduates.

The latter version is the way to guarantee assignment is to a single variable

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 50

Q & A

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 51

Sources

[1] Charles C. Mann “Why software is so bad?”
MIT Technology Review, 2002
http://www.technologyreview.com/featuredstory

/401594/why-software-is-so-bad/

[2] Robert N. Charette “Why Software Fails”
IEEE Spectrum 2005
http://spectrum.ieee.org/computing/software

/why-software-fails/

[3] Mark Minasi, “The Software Conspiracy”,
Mcgraw-Hill, 1999

Education for SW-Eng, Kinneret 2016 © by Yechiel M. Kimchi 52

Sources (cont.)

[4] Beth Layman “An Interview w. Jerry Weinberg”

Software Quality Professional, v.3 no.4, 2001 ASQ

http://www.stickyminds.com/interview/software-
engineering-state-practice-interview-jerry-weinberg

[5] J. Pontin, “The problem with Programming: Interview w.

B. Stroustrup”, MIT Technology Review, 2006

http://www.technologyreview.com/news

/406923/the-problem-with-programming

[6] Y. Kimchi, “Coding with Reason”, in “97 Things Every

Programmer Should Know”, ed. K.Henney, O’Reily 2010

