
The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

The BYOC course
-VHDL implementation of a simplified MIPS CPU

in a lab course

Danny Seidner

School of Computer Science
College of Management Academic Studies - COMAS

Rishon-LeZion
Israel

1 16/2/2016Kineret SW Eng., Israel

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

Outline

2

� Introduction

� How we teach Single Cycle implementation

� Use the same approach for teaching pipelined impl.

� FPGA design cycle

� BYOC course infrastructure

• Support in Lab exercise & source files

• Simulation infrastructure

• Implementation infrastructure

� Summary

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

Introduction

3

� Many universities & colleges base their Computer structure course

on Patterson & Hennessy’s “Computer Organization & Design – the

Hardware/Software interface”

� Their approach is to build the CPU in steps:

• Steps in building the Single Cycle implementation

• Go from Single Cycle to Multi-Cycle and then to pipelined version

� We follow this approach for a lab course in which the students

actually implement a simplified pipelined MIPS CPU

� This paper describes the course and the infrastructure we built

allowing control on the effort required from the student

� Thus, we can adjust the course to different populations – from

Computer Science programmers to Electrical Engineering students

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

How we teach Single Cycle implementation:

4

� We start with the FETCH phase – of a simple R-Type CPU (R-Type inst. only)

• Reading the instruction from Inst. Mem.

� Then describe the DECODE phase

• Describing The GPR File – that has all 32 General Purpose Regs

• Showing how Rs & Rt data is read from the GPR File

� Followed by the EXECUTE phase

• The ALU gets the Rs & Rt data and calculates result

� And finally, the Write Back phase

• Where the calculated result is written back into Rd in the GPR file

Kineret SW Eng., Israel 16/2/2016

5

A CPU capable of
R-type instructions
only

5[25:21]=Rs

5[20:16]=Rt

5[15:11]=Rd

Instruction

MemoryPC

Adder
4

ck

6[31:26]

6

PC 0x400000 0x400004

Memory output New Memory output

fetch fetch

32

[5:0]=funct

6

A CPU capable of
R-type instructions
only

5[25:21]=Rs

5[20:16]=Rt

5[15:11]=Rd

Instruction

MemoryPC

Adder
4

ck

6[31:26]

6

PC 0x400000 0x400004

Rs, Rt ALU inputs new ALU inputs

Memory output New Memory output

fetch decode fetch decode

32

[5:0]=funct

GPR File

ck

rd reg1

rd reg2

wr reg

rd data1

rd data2

wr data

32

32

7

A CPU capable of
R-type instructions
only

5[25:21]=Rs

5[20:16]=Rt

5[15:11]=Rd

Instruction

MemoryPC ALU

Adder
4

ck

6[31:26]

6[5:0]=funct

PC 0x400000 0x400004

Rs, Rt ALU inputs new ALU inputs

ALU

output

Memory output New Memory output

New ALU

output

fetch
Write

backdecode execute

32

32

32

32

GPR File

ck

rd reg1

rd reg2

wr reg

rd data1

rd data2

wr data

8

The internal structure of the GPR File

32

32

32
32

32

32

32

32

32

32

Read data 2

write data

Read data 1

5

5

5

Rd reg 2 (= Rt)

Rd reg 1 (= Rs)

RegWrite

Wr reg (= Rd)

32

E

Register #0 does not really exist

32

32
0

0

32

32

We read 2 different registers from the 2 outputs simultaneously

We write to one of the registers (in the next rising edge of the CK).

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

Cont. with the Single Cycle implementation:

9

� Next we show a Single Cycle CPU capable of LW instructions only

• It has FETCH, DECODE, EXECUTE, MEMORY & WRITE BACK

phases

• It had a Data Memory as well

� Then we add support of SW instruction

• Same Data Path - Just apply “1”-s to the right control signals

� Next we combine the two CPUs – Rtype only with LW & SW only

• Combining the 2 Data Paths requires a few MUX-s

� Finally we add other instructions

• The data path is changed to support BEQ and J instructions

• Control decoder is then explained in detail

Kineret SW Eng., Israel 16/2/2016

10

A CPU capable of

lw instructions only

5[25:21]=Rs

5[20:16]=Rt

Instruction

MemoryPC ALU

Adder
4

ck

6[31:26]

RegWrite=1

16[15:0]

5

add

Sext
16->32

Data

Memory

Address
D. Out

PC 0x400000

Rs, Rt ALU inputs

ALU output

(address)

Inst. Memory output

fetch Write

back
decode execute

Mem

data

memory

0x400004

new ALU inputs

New ALU output

(new address)

new Instruction

fetch Write

back
decode execute

Mem

data

memory

D. Mem

data

D.Mem

adrs

I.Mem

data

32

32

32

32

32

ck

GPR File

ck

rd reg1

rd reg2

wr reg

rd data1

rd data2

wr data

11

A CPU capable of lw & sw instructions only

5[25:21]=Rs

5[20:16]=Rt

Instruction

MemoryPC ALU

Adder
4

ck

6[31:26]

RegWrite=1

16[15:0]

5

add

Sext
16->32

Data

Memory

D.In

Address

MemWrite=0

32

32

32

32

ck

GPR File

ck

rd reg1

rd reg2

wr reg

rd data1

rd data2

wr data

32

12

A CPU capable of lw & sw instructions only

5[25:21]=Rs

5[20:16]=Rt

Instruction

MemoryPC ALU

Adder
4

ck

6[31:26]

RegWrite=0

16[15:0]

5

add

Sext
16->32

Data

Memory

D.In

Address

MemWrite=1

32

32

32

32

ck

GPR File

ck

rd reg1

rd reg2

wr reg

rd data1

rd data2

wr data

32

13

A CPU capable of R-type & lw/sw instructions

5[25:21]=Rs

5[20:16]=Rt

Instruction

MemoryPC ALU

Adder
4

ck

6[31:26]

RegWrite

16[15:0]

5

add

Sext
16->32

Data

Memory

5[25:21]=Rs

6[5:0]=funct ALU

control

Rd

Address

D.In

D. Out

MemWrite

32

32

32

32

32

32

32

32

ck

GPR File

ck

rd reg1

rd reg2

wr reg

rd data1

rd data2

wr data

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

The same approach for VHDL pipelined MIPS

14

� We start with the FETCH unit

• Reading the instruction

• Ready for jump & branch instructions

� We build the GPR File & ALU as components – for future phases

• Describing The GPR File – that has all 32 General Purpose Regs

• Showing how Rs & Rt data is read from the GPR File

� Combine the Fetch Unit, the GPR File and ALU into a “Rtype” CPU

• This CPU has 4 phases: FETCH, DECODE, EXECUTE, WRITE

BACK

• It supports Rtype instructions, but also branch & jumps which in

pipelined MIPS are performed in the DECODE phase

• We also support ADDI instruction – to allow testing of the CPU

� Then, add more instructions in steps (lw & sw, then lui, ori, jal, jr)

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

We need also to introduce FPGA & VHDL

15

� Actually we need to start with FPGA design cycle and VHDL language

• Implementing a design involves:

• Writing VHDL code – description of the H/W in VHDL

• Simulating the design – check ALL(?) signals

• Compiling into bit file – only after successful simulation

• Loading into the circuit & testing the implementation

� In the first 3-4 classes we teach all of the above

• Lectures 1&2 – Basics of VHDL & FPGA design process

• Lectures 3&4 – Debugging a pre-prepared simple design which is

required in order to learn the tools and the process

� Then the implementation of the simplified pipelined MIPS begins

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

BYOC course agenda – 6 projects

16

� VHDL & SW tools intro - (L1-L2)

� First design - learning the system & VHDL - P1 (L2-L4)

� Fetch unit of our MIPS CPU - P2 (L3-L5)

� The GPR file & the ALU - P3 (L5-L6)

� R-type only CPU – combining P2 & P3 - P4 (L6-L8)

� Adding the Data Memory and lw, sw inst. - P5 (L8-L10)

� Adding jal, jr, lui, ori inst. & forwarding - P6 (L10-L13)

and running a simple Pong game – if successful design

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

A short intro to VHDL

� VHDL is a HW description language

� In this language we write “equations” describing combinational

or sequential “entities” or components & their connections

� We then convert it to a chip with a “silicon compiler” by

implementing gates, FFs, memories etc., on a silicon layer

or

� We configure a special chip called FPGA to behave according

to the equations we wrote in VHDL

� This will be explained in the next few slides

Kineret SW Eng., Israel 16/2/2016

thatThis IF statement stands for

mux_2to1: process (A, B, sel)

begin

if sel = ‘0' then

Y <= A;

else

Y <= B;

end if;

end process;

A

B
Y

sel

≡

A

Y

B

sel

0

1

A VHDL process example: 2→1 mux

2→1 mux vs. Nx(2→1)

A

Y

B

sel

0

1

process (A, B, sel)

begin

if sel = ‘0' then

Y <= A;

else

Y <= B;

end if;

end process;

In both cases we have the same process code

In the single wire case we define:

signal A : STD_LOGIC;

In the multi-wire case we define:

signal A : STD_LOGIC_VECTOR (7 downto 0);

A[7:0]

Y[7:0]

B[7:0]

sel

0

1
8

8

8

8x(2→1) mux(2→1) mux

4→1 mux

process (A, B, C, D sel)

begin

if sel = b”00” then

Y <= A;

elsif sel = b”01” then

Y <= B;

elsif sel = b”10” then

Y <= C;

else

Y <= D;

end if;

end process;
C[7:0]

Y[7:0]

D[7:0]

Sel[1:0]

10

11

8
8

8

A[7:0]

B[7:0]

00

01

8

8

2

C
Y

D

Sel[1:0]

10

11

A

B

00

01

2

4→1 mux

8x(4→1) mux

2→4 decoder

signal sel : STD_LOGIV_VECTOR (1 downto 0);

signal Y : STD_LOGIV_VECTOR (3 downto 0);

process (sel)

begin

if sel = b”00” then

Y <= b“0001”;

elsif sel = b”01” then

Y <= b”0010”;

elsif sel = b”10” then

Y <= b”0100”;

else

Y <= b”1000”;

end if;

end process;

sel(0)

Y(0)

sel(1)

Y(1)

Y(2)

Y(3)

2→4 decoder

A sequential process example

If CE=‘1’ we sample data,

else we keep the data unchanged.

If we have a rise in the CK then:

A[7:0]

CE

Y[7:0]D Q

CK

8
8

Here:

signal A : std_logic_vector (7 downto 0);

signal Y : std_logic_vector (7 downto 0);

signal CE : std_logic;

signal CK : std_logic;

≡

A[7:0]

CE

Y[7:0]D Q

CK

8 8

process (CK)

begin

if CK’event and CK=‘1’ then

if CE = ‘1' then

Y <= A;

end if;

end if;

end process;

What do we do with VHDL?

• FPGA device can implement any function we want

• We describe our design in VHDL

This is similar to writing a program

• While programs are compiled to machine language

and then loaded into a computer and run, we here

must implement our design on some kind of HW

• We “compile” our design and “load” it into a

special HW device called FPGA

• How??

FPGA concept

The Field Programmable Gate Array has an array of Logic Blocks

sel1

0

1

D Q

CK
sel2

0

1
Y

LUT

Configure (load) the LUT

Let’s demonstrate implementation of a simple mux.

During “configuration phase”, we fill up the LUT and choose values for sel1 & sel2

A0

A1

A2

FPGA concept

The Field Programmable Gate Array has an array of Logic Blocks

sel1

0

1

D Q

CK
sel2

0

1
Y

Configure (load) the LUT

Let’s demonstrate implementation of a simple mux.

During “configuration phase”, we fill up the LUT and choose values for sel1 & sel2

A0

A1

A2

in1

sel

in0

000 => 0
001 => 1
010 => 0
011 => 1
100 => 0
101 => 0
110 => 1
111 => 1

We fill up the LUT with the truth-table representing the required function!

Here it is the mux truth table. When sel=0, we have Y=in0, when sel=1 we have Y=in1

FPGA concept
There is also a matrix of internal lines allowing connections to/from the Logic Blocks

We can “connect” between Logic Blocks by connecting specific intersections

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

The connections are determined during configuration - 1 bit determines a connection

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

HW1 – The 1st design

27

The design is a free-running 6 bit counter that is displayed on 4 LEDs
It has many errors and the student needs to simulate it, create a bit file &
test it on the Nexys2 board – i.e., the complete FPGA design cycle

CK (50 MHz)

pushbutton

anodes_out

switches

sevenseg_out

ck_divider

counter_6bits

Decoder_7seg

decoder_2to4

7

2 MSBs

4 LSBs

mux

2→1

4

digit_val

digit_no

switches(1)

4

p4_top.vhd

switches(0)

reset

osc_CK

manual_CK

(~1.5 Hz)

Kineret SW Eng., Israel 16/2/2016

28

HW2 – The Fetch Unit

32
IR_reg

Fetch_unit

Rs

Rt

Rd

HW2_top

Sext_imm

IF ID

IMem

rdbk0-15

CK_25MHz
MIPS_hold
MIPS_reset

Host_IntfCK

divider

TB.vhd

28Kineret SW Eng., Israel 16/2/2016

HW3 – GPR File & MIPS ALU – simulation only

32

32

32

32

5

5

5

GPR_File MIPS_ALU

Rs

Rt

Rd

GPR_write_data
3

GPR.vhd

rd_reg1

rd_reg2

wr_reg

rd_data2

rd_data1

wr_data

Sext_imm

A_in

B_in
32

32

32

ALU_output

CK

GPR_File_TB.vhd

GPR_rd_data1

GPR_rd_data2

2

ALUOP 6

Funct

MIPS_ALU_TB.vhd

MIPS_ALU.vhd

29Kineret SW Eng., Israel 16/2/2016

HW4 – “Rtype” CPU – putting it together (Rtype & addi, j, branch, no jr)

2

ALUOP_pE

X

32

32

32

32

32

5

5

5

IR_reg

Fetch_unit GPR_File MIPS_ALU

Rs

Rt

Rd

Reg_write_pID

6

Funct_pEX

2
ALUOP_pID

3

HW4 MIPS CPU

rd_reg1

rd_reg2

wr_reg

rd_data2

rd_data1

wr_data

Rt

Rd

Sext_imm

Reg_write_pWB

Rd_pEX5

5

5

5

32

A_reg

B_reg

ALUout reg32

32

32

IF ID EX WB

WB

32IMem

GPR_wr_data

Rd_pWB

Rd_pWB

rdbk0-15

CK_25MHz
MIPS_hold
MIPS_reset

Host_Intf

Rt_pEX

CK

divider

TB.vhd

30Kineret SW Eng., Israel 16/2/2016

HW5 (adding Data Memory) – The simulation version

2

ALUOP_pE

X

32

32

32

32

32

5

5

5

IR_reg

Fetch_unit GPR_File MIPS_ALU

Rs

Rt

Rd

Reg_write_pID

6

Funct_pEX

2
ALUOP_pID

3

HW5_MIPS CPU

rd_reg1

rd_reg2

wr_reg

rd_data2

rd_data1

wr_data

Rt

Rd

Sext_imm

Reg_write_pWB

Rd_pEX
5

5

5

5

32

A_reg

B_reg

ALUout

reg

32

32

32

IF ID EX WB

WB

32 32

ALUout_reg_pWB

ME

M

IMem

DMem

MDR

reg

GPR_wr_data

Rd_pWB

Rd_pWB

B_reg_pMEM

Rd_pMEM

rdbk0-15

CK_25MHz
MIPS_hold

MIPS_reset
Host_Intf

Rt_pEX

CK

divider

TB.vhd

31Kineret SW Eng., Israel 16/2/2016

HW5 -The implementation version

2

ALUOP_pEX

Nexys2 board

32

32

5

5

5

IR_reg

Fetch_unit GPR_File MIPS_ALU
Rs

Rt

Rd

Reg_write_pID

6

Funct_pEX

2

ALUOP_pID

3

HW5_MIPS.vhd

rd_reg1

rd_reg2

wr_reg

rd_data2

rd_data1

wr_data

Rt

Rd

Sext_imm
Reg_write_pWB

Rd_pEX
5

5

5

5

A_reg

B_reg

ALUout_reg

IF ID EX WB

WB

32

ALUout_reg_pWB

MEM

IMem

DMem

MDR_reg

GPR_wr_data

Rd_pWB

Rd_pWB

B_reg_pMEM

Rd_pMEM

BYOC_Host_Intf

rdbk0-15

CK

driver

CK

HW5_MIPS.ucf

RS232_Rx

CK_25MHz

buttons_in (3:0)

switches_in (7:0)

PS2C
PS2D

MIPS_hold

MIPS_reset

MT_ce_n

Flash_adrs
Flash_ce_n
Flash_we_n
Flash_oe_n
Flash_rp_n

Flash_wr_data
Flash_rd_data

sevenseg_out

RS232_Tx

anodes_out
leds_out

‘1’

RS232

VGA

Flash_data

Flash_sts

all VGA signals

32

10

4
7

8

PS2

32

32

32

3232

32

32

Fl

a

s

h

m

e

m

rdbk0
rdbk1

rdbk15

Rt_pEX

32Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

Now is a good time to discuss the process

33

� First we define the design we want

� Then we code it in VHDL

• It can be done in text file or in graphical mode

• We use text files

� Next step is simulation

• It means testing the design by SW simulation- same as unit test

• MUST be done – otherwise success chances are slim to none

� Only then we compile the design into a BIT file

� Now we can “load” it into the FPGA on the board and run it

� Debugging the circuit requires a way to check signal values

Kineret SW Eng., Israel 16/2/2016

In0

In1

sel

out_y

Now we can repeat the

simulation with real timing

FPGA design processStart

End

Code in VHDL

Define specs

*.vhd files

OK?

Compile to bit file

Load into board

OK?

no!

no!

entity mux_8x2to1 is

Port (

in0 : in STD_LOGIC_VECTOR (7 downto 0);

in1 : in STD_LOGIC_VECTOR (7 downto 0);

sel : in STD_LOGIC;

out_y : out STD_LOGIC_VECTOR (7 downto 0)

);

end mux_8x2to1;

architecture Behavioral of mux_8x2to1 is

begin

process (ino, in1, sel)

begin

if sel = ‘0’ then out_y <= in0;

else out_y <= in1;

end if;

end process;

end Behavioral;

Logic Simulation

In0

In1

sel

out_y

Logic Simulation

Synthesis

(to Logic Blocks)

000010101000100010001000111100

000011010001010100001011110010

100101010100101001010101001011

000111110101011110100101000111

111110100010000100011111101010

110001110001010010101001101110

Routing

(to fit the device)*.bit file

34Kineret SW Eng., Israel 16/2/2016

FPGA design process

A Logic Analyzer is a measurement

device allowing to see signals in the

design

Debugging in the board requires tools:

We could route the required signals to

external pins and hook them to a Logic

Analyzer

Instead we route the required signals

to a RS232 port that can be read by a

PC with a BYOCInterface SW

How do we know what to fix if it does

not work??

Start

End

Code in VHDL

Define specs

*.vhd files

OK?

Compile to bit file

Load into board

OK?

no!

no!

Logic Simulation

*.bit file

35Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

36

� Support while coding

BYOC course infrastructure

• Start with a detailed explanation of the lab project including all

signal names

• Give a pre-prepared vhd file with i/o pins definitions

• Add signal definitions – all of them or part of them

• Give also the components used and components connections (port

maps)

• Add notes describing what should be written & where

• Give some of the equations – as an example

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

An example of a simple design

8

8 8

mux_8x2to1

in0

in1

sel

out_y

8

8

compatator

8bit

A

B

AgtB

AeqB

8
B_in

A_in
8

We need to define the I/Os of a new entity, max detector

8

Y_out

max_detector

We need to specify the two components we use – mux_8x2to1 and compataror_8bit
We need to “connect” the blue wires directly or via signals

not_equalis_equal is_not_equal

choose_A

A_vec

B_vec

If there is other logic inside (additional processes), we also need to specify them

37Kineret SW Eng., Israel 16/2/2016

The vhd file of this example

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

Here we define the entity max_detector

that is, define the I/Os – the “pins”

entity max_detector is

Port (

A_in : in STD_LOGIC_VECTOR (7 downto 0);

B_in : in STD_LOGIC_VECTOR (7 downto 0);

Y_out :out STD_LOGIC_VECTOR (7 downto 0);

not_equal :out : STD_LOGIC

);

end max_detector ;

We start with defining components

to be used inside the entity

component mux_8x2to1 is

Port (

in0 : in STD_LOGIC_VECTOR (7 downto 0);

in1 : in STD_LOGIC_VECTOR (7 downto 0);

sel : in STD_LOGIC;

out_y : out STD_LOGIC_VECTOR (7 downto 0)

);

end component ;

component comarator_8bit is

Port (

A : in STD_LOGIC_VECTOR (7 downto 0);

B : in STD_LOGIC_VECTOR (7 downto 0);

AgtB :out STD_LOGIC;

AeqB : out STD_LOGIC

);

end component ;

In the architecture part we specify the

inside of the max_detector entity

architecture Behavioral of max_detector is

The vhd file of this example (cont.)
-- signals

signal is_equal : STD_LOGIC;

signal is_not_equal : STD_LOGIC;

signal choose_A: STD_LOGIC;

signal A_vec: STD_LOGIC_VECTOR (7 downto 0);

signal B_vec : STD_LOGIC_VECTOR (7 downto 0);

we also define the inner signals

Processes inside this entity come here.

This is the design logic & usually it is

the main part of the code

-- Here we have the internal logic.

-- We may add instructions of what to write here

is_not_equal <= not (is_equal);

Here are all the “connections”

The entity’s i/o pins to signals

& components to signals

-- connectinting the i/o pins to signals

A_vec <= A_in;

B_vec <= B_in;

not_equal <= is_not_equal ;

Comp1 : comparator_8bit

port map (

A => A_vec,

B => B_vec,

AgtB => choose_A,

AeqB => is_equal);

Comp2 : mux_8x2to1

port map (

in_0 => B_vec, -- connect to an internal signal

in_1 => A_vec,

sel => choose_A,

out_y => Y_out); -- direct to pin

begin

end Behavioral;

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

BYOC course infrastructure

40

� Support in simulation

• Start with a detailed explanation of the lab project including all

signal names, all rdbk signals and their connection to the TestBench

• Prepare a TestBench that reads the rdbk signals, compares them to

ones “recorded” from a correct design and reports errors to the

simulator console

• Prepare the appropriate MIPS assembly program that test the

functionality of the design. You may deliberately omit part of the

functionality – so that malfunctioning will be found later in the course

• Give the students the program and the compare data for the parts of

the design for which you want to ease the debugging

• For other parts ask the students to look at the signal waveforms in

the simulator and explain what they see

• Have a complete TB version for teacher that checks everything

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

BYOC course infrastructure

41

� Support in simulation

• The students get two pre-prepared components – a clock driver and

the BYOC_Host_Intf

• The clock driver is a simple divide by 2 circuit that in the

implementation phase requires a special BUFG component which the

students are not familiar with

• The BYOC_Host_Intf has the Instruction Memory (IMem) and the

Data Memory (Dmem) and some infrastructure capable of “loading”

program into the IMem at the beginning of simulation

• Actually we have two versions of this component. The

BYOC_Host_Intf_4sim has the same interface (i/o pins) as the

BYOC_Host_Intf component used for implementation. This makes it

very easy to convert the simulation version of the design to an

implementation version.

Kineret SW Eng., Israel 16/2/2016

The Fetch Unit Simulation project

RESET HOLD

HW2_TB

Fetch_Unit

CK

MIPS_reset

CK_25MHzCK

Gen.

rdbk0_out_to_TB

CK_out_to_TB

RESET_out_to_TB

3

2
3

2

MIPS_hold

CK

driver

CK_50MHz

HOLD_out_to_TB

Also called CK

I. Mem

MIPS_IMem_adrs

MIPS_IMem_rd_data

BYOC_Host_Intf_4si

m

HW2_top_4sim

CK

3

2

rdbk1_out_to_TB

rdbk15_out_to_TB

HW2_IMem_program.dat HW2_TB_data.dat

Error

messages

?

42Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

-- ALU

process(ALUOP, Funct, ORI)

begin

if ORI = '1' then

ALU_cmd <= b"001"; -- FUNCT=OR

elsif ALUOP = b"00" then

ALU_cmd <= b"010"; -- ADD

elsif ALUOP= b"01" then

ALU_cmd <= b"110";-- SUB

else

if Funct = b"100000" then

ALU_cmd <= b"010"; -- FUNCT=ADD

elsif Funct = b"100010" then

ALU_cmd <= b"110"; -- FUNCT=SUB

elsif Funct = b"100100" then

ALU_cmd <= b"000"; -- FUNCT=AND

elsif Funct = b"100101" then

ALU_cmd <= b"001"; -- FUNCT=OR

elsif Funct = b"100110" then

ALU_cmd <= b"011"; -- FUNCT=XOR

elsif Funct = b"101010" then

ALU_cmd <= b"111"; -- FUNCT=SLT

else

ALU_cmd <= b"010"; -- ADD

end if;

end if;

end process;

43

Here is the ALU control correct code

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

44

Here is the simulation

Test passed!

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

-- ALU

process(ALUOP, Funct, ORI)

begin

if ORI = '1' then

ALU_cmd <= b"001"; -- FUNCT=OR

elsif ALUOP = b"00" then

ALU_cmd <= b"010"; -- ADD

elsif ALUOP= b"01" then

ALU_cmd <= b"110";-- SUB

else

if Funct = b"100000" then

ALU_cmd <= b"010"; -- FUNCT=ADD

elsif Funct = b"100010" then

ALU_cmd <= b"110"; -- FUNCT=SUB

elsif Funct = b"100100" then

ALU_cmd <= b"001"; -- FUNCT=AND

elsif Funct = b"100101" then

ALU_cmd <= b"000"; -- FUNCT=OR

elsif Funct = b"100110" then

ALU_cmd <= b"011"; -- FUNCT=XOR

elsif Funct = b"101010" then

ALU_cmd <= b"111"; -- FUNCT=SLT

else

ALU_cmd <= b"010"; -- ADD

end if;

end if;

end process;

45

Here is the ALU cntrol code with errors

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

46

Here is the simulation now

Test failed!

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

BYOC course infrastructure

47

� Support in implementation step

• The BIT file is loaded to the board via a SW application supplied by

the board manufacturer (Adept by Digilent)

• Instructions of what to omit (TB signals, TB.vhd file etc.) when

migrating from simulation to implementation are given

• The students get the implementation version of the two pre-prepared

components – the clock driver and the BYOC_Host_Intf

• A User Constraints File (UCF) describing the connections of the i/o

signals to actual FPGA pins is also given

• The BYOC_Host_Intf has an RS232 interface connection to a PC. A

special application, the BYOCInterface SW, allows loading of IMem

with code. It also allows to run the design in single-clock mode and

display 16 values of 32 bit rdbk signals outputted from the design

• Compare files for this rdbk data is also given. Again, we control

which part of the design we want the students to compare

Kineret SW Eng., Israel 16/2/2016

The Fetch Unit Implementation project

Fetch_Unit.vhd

CK

MIPS_reset

CK_25MH

z

CK

Gen.

MIPS_hold

CK

driver

CK_50MHz

(Also called

CK)
I. Mem

MIPS_IMem_adrs

MIPS_IMem_rd_data

BYOC_Host_Intf.ngc

HW2_top.vhd

switches_in(7:0)

buttons_in(3:0)
leds_out(7:0)

rdbks 0 to 15

rdbk15

rdbk1
rdbk0

RESET HOLD

RS232

cable

Programming

(USB) cable

PC

BYOCInterface

SW

Adept

SW

Nexys2

board
BYOC.ucf

rdbk15

rdbk1

rdbk0

CK

Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

Read data

from MIPS

memories

Load program

into IMem

Choosing a

compare file

The

single-step

button

Change the

com port

The run btn

BYOCInterface SW panel

49Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

The updated BYOCInterface SW panel

Multiple

steps are

possible

Compare

error

counter

Can read

consecutive

addresses

Can write

50Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

51

BYOC course unique features
� We teach the entire HW design process

• Design & coding (inc. syntax check)

• Logic simulation

• Implementation & testing

� We have total control on the amount of effort required

from the student:

• In design – we decide what “empty” files are given

• In simulation – we determine the parts automatically

tested

• In implementation – we determine what is compared

� This is a great platform for HW & SW projects in Computer

Architecture (adding Floating point, super-scalar, etc.)
Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

� In this paper we described a lab course in which the students

actually implement a simplified pipelined MIPS CPU in VHDL

� The course leads the student to build the CPU in a step by step

approach that makes it easy to understand the CPU structure

� The course teaches process of designing and testing an FPGA

design

� The infrastructure we built allows full control on the effort level

required from the student during the design, simulation, and the

implementation phases. Thus we can adjust the course for

different populations – from Computer Science students to

Electrical Engineering students

� This course can be a great platform for many projects related to

computer architecture

Conclusion

52Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

Thank you

53Kineret SW Eng., Israel 16/2/2016

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

Backup slides

54Kineret SW Eng., Israel 16/2/2016

R-type

add Rd, Rs, Rt # Rd=Rs+Rt
sub Rd, Rs, Rt # Rd=Rs-Rt
and Rd, Rs, Rt # Rd=Rs AND Rt
or Rd, Rs, Rt # Rd=Rs OR Rt
xor Rd, Rs, Rt # Rd=Rs XOR Rt
slt Rd, Rs, Rt # if Rs<Rt Rd=1 else Rd=0
jr Rs # PC=Rs (note that Rd=0)

I-type

addi Rt, Rs, imm # Rt=Rs+ sext(imm)
lw Rt, imm(Rs) # Rt=M[Rs + sext(imm)]
sw Rt, imm(Rs) # M[Rs + sext(imm)]=Rt
beq Rs, Rt, label # if Rs==Rt, PC=PC+4+ sext(imm)*4

else PC=PC+4
bne Rs, Rt, label # same as beq with cond of Rs≠Rt
ori Rt, Rs, imm # Rt=Rs OR imm (no sext)
lui Rt, imm # Rt= imm<<16 (no sext)

OPCODE

Rs Rt Rd FUNCTION000000 00000

6 6555

Rs Rt imm
6 1655

OPCODE

26 bit imm
6 26

OPCODE

j-type

j imm # PC= imm*4 (no sext)
jal imm # PC= imm*4, $31=PC+4 (no sext)

MIPS

instructions

The BYOC course – VHDL implementation of a simplified MIPS CPU in a lab course D. Seidner

Empty slide

56Kineret SW Eng., Israel 16/2/2016

