
Using Reference-based Framework for 

Improving the Utilization of Software 

Engineering Principles 

Oded Kramer(odedkr@bgu.ac.il) 
Department of Information Systems Engineering 

Ben-Gurion University of the Negev 

 

Ben-Gurion University of the Negev 

Arnon Sturm(sturm@bgu.ac.il) 
Department of Information Systems Engineering 

Ben-Gurion University of the Negev 

 

 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Outline 

 Introduction 

 Related work 

 Domain Engineering 

 DSLs 

 The Proposed Approach  

 Application-Based Domain Modeling (ADOM) 

 ADOM-Java: Applying ADOM to Java 

 Evaluation 

 Summary 

 

 

2 2 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

3 3 

We teach our students many software engineering principles. 

 Low Coupling 

High Cohesion 

 Encapsulation 

 Layering  

……. 

 

 Do they really understand and ready to implement these 

principles? 

 

 

Well, they do …..yet to a limited extent. 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

4 4 

 In this work, we propose a framework that better guides students 

to implement SE principles. 

 

 The framework relies on the notion of patterns, domain 

engineering, software product lines, and DSL. 

 

We apply the approach to programming language – Java. 

 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

Domain Engineering: Definition and Process 

 

 

 

 

5 5 

 “The purpose of domain engineering is to provide the reusable 

core assets that are exploited during application engineering 

when assembling or customizing individual applications.” [Harsu, 

2001] 

 

 

 

 

 

 

 

 

 

 

 

 

[Ardis, 2000] 

 

 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

 DSLs provide abstraction over the domain. 

 The domain semantics are handled by code generators. 

 DSLs support a closed set of concepts allowing 

validation when specifying specific application.  

 As a consequence, DSLs leads to improved quality and 

productivity [Kieburtz , 1996] 

 

 Two type of DSLs 

 External 

 Internal 

 

 

 

 

Domain specific languages (DSLs) 

6 6 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

External DSLs: Pros and Cons 

  

 

7 

1. External DSLs are usually 

abandoned in the 

development process. 

[Freeman , 2006] 

2. External DSLs introduce a 

significant change of the 

programming paradigm. 

3. External DSLs are suitable 

for large scale product lines 

companies.  

4. External DSLs limit the 

application developer’s 

expressiveness. 

7 

Pros 

 

Cons 

 

1. External DSLs enable 

abstraction. 

 

2. External DSLs reuse expert 

knowledge.   

 

3. External DSLs can validate 

the developer’s code.  

Conclusion:  

Applicability is low. 
Conclusion:  

Productivity is high. 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

Internal DSLs: Pros and Cons 

 

  

8 

1. Internal DSLs lack in 

their abstraction 

capabilities.  

 

2. Internal DSLs lack in 

their support for 

validation. 

Pros 

 

Cons 

 

 

1. Internal DSLs require 

less efforts in the 

domain engineering 

activities. 

 

2. Internal DSLs require a 

less radical change in 

the programming 

paradigm. 

 

3. Internal DSLs  keep the 

application developer’s 

expressiveness. 

Conclusion:  

Productivity not as high. 
Conclusion:  

Applicability is high. 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

The underlying Framework: Application-based Domain Modeling (ADOM) 

Language layer:  

defines the used languages 

in both layers. 

  

Domain layer: 

guides and validates the 

application models. 

  

 

Application  layer: 

domain-specific applications. 

 

9 

In this work we use Java as the modeling language - this is called ADOM-Java.  

 Multi Agent 

Systems 
Web 

applications 

 

UML 

 

Amazon eBay Kasbah 

 

[Reinhartz-Berger & Sturm (2004…)] 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

ADOM-Java: Domain Abstraction 

10 

Conference System: Labs System: 

Domain: 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

ADOM-Java: Indicators and Classification via Java Annotation 

Domain 

 
@Indicators 

public class Controller { 

 
 DBmapper db; 

 
 public boolean 
changeStateDomainObject() 

 
 public boolean 
addDomainAssociation() 

 
 public DomainObject 
addDomainObect() 

 

 

11 11 

Application 

 
@Controller  

Public class AppController { 

 

    @db  

    AppMapper db; 

 

 @changeStateDomainObject 

    public boolean fixWS() 

 

 @addDomainAssociation  

    public boolean assignProgtoWS() 

 

 @addDomainObect 

   public Lab addLab() 

 @addDomainObect 

 public Program addProgram() 

 

 public boolean 

 reportMalfuctionWS() 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

ADOM-Java: Indicators 

12 

Indicator Constraint Goes where? Attributes 

Multiplicity Multiplicity  All ADOM-Java 

elements 

Min – minimum number of allowed 

instances  

Max- maximum number of allowed instances 

Final Language Class, Field and Method ModifierOptions Enum which has three 

possible values: (TRUE, FALSE, ALL)  

Static  Language Field and Method ModifierOptions Enum which has three 

possible values: (TRUE, FALSE, ALL) 

Access Language Class, Constructor Field 

and Method 

Array of AccessOptions Enum which has five 

possible values: (PRIVATE, PACKAGE, 

PROTECTED, PUBLIC, ALL) 

Typing Language Field, Method and 

Parameter 

Array of Java and ADOM-Java types 

Generic Typing Language Field, Method and 

Parameter 

Array of Java and ADOM-Java types 

Statement Language Statement Array of StmtOptions which have 17 possible 

values: 16 according to the different Java 

statement types and ALL. 
  

Ordering Ordering - - 
  



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

ADOM-Java Constraints: Multiplicity and Language 

//domain code: 

@Multiplicity (min = 1, max = 1) 

public class Controller {    

 
 @Access({AccessOptions.PRIVATE, AccessOptions.PACKAGE}) 

 @Multiplicity (min = 1, max = 1) 

 DBmapper db;      

 

 

  @Multiplicity (min = 1) 

 @Typing({DomMultiStatedObj.class, DomSingleStatedObj.class}) 

 public DomSingleStatedObj addDomainObect() 

    

 

} 

 

 
 

 

 13 

(Controller must be public and non-
final and single!) 

(db must be non static and non-final and single!              
         May be either private or package) 

(add Domain Object must be public, non-static, and non-final! 

may return either a DomMultiStatedObj or a DomSingleStatedObj) 
and must appear al least once! 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

ADOM-Java Constraints: Constraining Behavior via Statements 

//domain code: 

@Multiplicity (min = 1) 

@Typing ({DomMultiStatedObj.class, DomSingleStatedObj.class }) 

public DomainMultiStatedObject addDomainObect( 

 @Multiplicity (min = 1) String ObjectsData) { 

 DomainMultiStatedObject dom = new 

DomainMultiStatedObject(ObjectsData); 

 DBupdate: db.addDomainObject(dom); 

 objectReturn: return dom; 

{ 

//application code: 

@addDomainObect_String_ObjectsData 

public Lab addLab(@ObjectsData String id,@ObjectsData String maxWS) { 

  @dom 

  Lab l = new Lab(Integer.parseInt(id), Integer.parseInt(maxWS)); 

  @DBupdate 

  db.addLab(l); 

  @objectReturn 

  return l;     { 

 
14 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

ADOM-Java Constraints:  Multiplicity, Statements and Ordering 

//domain code: 

@Multiplicity (min = 1) 

@Typing ({DomMultiStatedObj.class, DomSingleStatedObj.class }) 

public DomainMultiStatedObject addDomainObect( 

@Multiplicity (min = 1) String ObjectsData) { 

   

  @Multiplicity (min = 1, max = 1) 

  DomainMultiStatedObject dom = new DomainMultiStatedObject(ObjectsData); 

  

  @Multiplicity (min = 1, max =1 ) 

  DBupdate: db.addDomainObject(dom); 

  

  @Multiplicity (min = 1, max =1) 

  objectReturn: return dom; 

{ 

 

 

 

15 

dom must appear once and of expression 
type! 

Dbupdate must appear once and of 
expression type!  

objectReturn must appear once and of 
return type!  

Statements order must be kept!! 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

ADOM-Java: Guidance and Instantiation (Structural)  

Domain 
 

@Multiplcity (min = 1) 

public class Controller { 

 

 @Multiplcity (min = 1) 

 DBmapper db; 

 

 @Multiplcity (min = 1) 

 public boolean 
changeStateDomainObject() 

  

 @Multiplcity (min = 1) 

 public boolean 
addDomainAssociation() 

 

 @Multiplcity (min = 1) 

 public DomainObject 
addDomainObect() 

 

 

16 16 

 

Application 
 

@Controller  

Public class AppController { 

 

    @db  

    AppMapper db; 

 

 @changeStateDomainObject 

    public boolean fixWS() 

 

 @addDomainAssociation  

    public boolean assignProgtoWS() 

 

 @addDomainObect 

   public Lab addLab() 

 @addDomainObect 

 public Program addProgram() 

 

 public boolean 

 reportMalfuctionWS() 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

ADOM-Java: Guidance and Instantiation (Behavioral)  

//domain code: 

@Multiplicity (min = 1) 

@Typing ({DomMultiStatedObj.class, DomSingleStatedObj.class }) 

public DomainMultiStatedObject addDomainObect( 

 @Multiplicity (min = 1) String ObjectsData) { 

 DomainMultiStatedObject dom = new 

DomainMultiStatedObject(ObjectsData); 

 DBupdate: db.addDomainObject(dom); 

 objectReturn: return dom; 

{ 

17 

//application code: 

@addDomainObect_String_ObjectsData 

public Lab addLab(@ObjectsData String id,@ObjectsData String maxWS) { 

  @dom 

  Lab l = new Lab(Integer.parseInt(id), Integer.parseInt(maxWS)); 

  @DBupdate 

  db.addLab(l); 

  @objectReturn 

  return l;}      

//application code: 

@addDomainObect_String_ObjectsData 

public AppDomMultiStatedObj AppDomMultiStatedObj(@ObjectsData AppObjectData){ 

  @dom 

  AppDomMultiStatedObj app = new AppDomMultiStatedObj(AppObjectData ); 

  @DBupdate 

  AppDb.addDomainObject(app); 

  @objectReturn 

  return app;} 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

Goal and Objectives 

To summarize, we propose a framework with the following 

capabilities from both DSL approaches: 

 Capturing and reusing domain experts' knowledge in the form 

of domain rules and constraints. 

 Validating the application according to domain rules and 

constraints. 

 Keep the developer expressiveness as the domain 

specification is embedded into a GPPL. 

 

 

We expect that the proposed framework will increase the 

productivity and quality of the application code and still 

maintain applicability and expressiveness.  

 

18 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

Quantitative Research: The Research Model 

19 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

Quantitative Research: Results 

20 

Development 

time (hours) 

Functional quality (number 

of passed tests) 

ADOM-Java 7.49 2 

Pure-Java 8.43 1.54 

Significance p<0.001 p>0.05 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

Quantitative Research: Qualitative Research of the Design 

 Data Collection 

 Various comments were assigned:  

• Over permissive access modifiers. 

• Deviation from the layers separation paradigm. 

 Data Coding 

 The comments were coded according to the given domain model: 

• Layers separation. 

• Responsibility assignments. 

• General coding issues. 

 Data Analysis 

21 

Problem Type Pure- 

Java 

ADOM-

Java 

Layered separation 8 0 

Responsibility assignments - - 

 Skinny objects 12 0 

 Partial responsibility 4 5 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

Qualitative Research 

 20 students in 3 sessions. 

 Data  Collection 

 Several guiding questions. 

 Advantages and disadvantages questions. 

 Data Coding 

 Answers were coded with 1-3 descriptive words. 

 Data Analysis 

 Similar codes were abstracted into a common attribute. 

 Findings 

Validation perceived as complex, cumbersome and frustrating.  

 Positive comments were related to guidance and code design. 

Negative comments were related to complexity, usability and a 

learning curve.  

 

 

 

22 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

Evaluation Conclusions 

 The guidance in ADOM-Java was significant. 

Quantitative results were in favor of ADOM-Java in both 

development time and passed tests. 

 Incorporated design principles were treated better in ADOM-

Java. 

 Usability and learning curve were perceived as significant 

disadvantages. 

 Improved results were achieved despite of significant 

disadvantages.  

 

 

23 



Department of Information Systems Engineering Ben-Gurion University of the Negev 

Summary Evaluation The Proposed Approach Related Work Intro 

Summary 

The results indicate that formalizing and guiding 

students while implementing SE principles would 

allow them to better utilize such principles. 

 

Additional evaluation of the suggested approach 

and other alternatives is required. 

 

 

 

 

24 24 


